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SATELLITE REMOTE SENSING
AND THE MARINE BIODIVERSITY 

OBSERVATION NETWORK
CURRENT SCIENCE AND FUTURE STEPS

SPECIAL ISSUE ON THE MARINE BIODIVERSITY OBSERVATION NETWORK: AN OBSERVING SYSTEM FOR LIFE IN THE SEA

Waters off the Alaskan coast usually come alive each spring with blooms 
of phytoplankton, visible in this image of the Chukchi Sea acquired on 
June 18, 2018, by the Operational Land Imager (OLI) on Landsat 8. Image 
credit: NASA/US Geological Survey/Norman Kuring/Kathryn Hansen
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INTRODUCTION
Multiple stressors to coastal ecosystems 
associated with global change include 
warming waters, rising sea level, reduced 
oxygen, reduced pH, changing produc-
tivity, and sea ice loss (Gruber, 2011; 
Doney et  al., 2012; Mathis et  al., 2014), 
and these are in addition to changes in 
water quality associated with upland land 
use, nutrient pollution, and coastal infra-
structure. Stressors, their interactions 
(e.g., Bopp et al., 2013), and the scales at 
which they affect ecosystems are mod-
ulated by different levels of biological 
organization— either through physiolog-
ical shifts or changes in species assem-
blages. These changes in the abundance 
of different forms of life, or biodiversity, 
can be measured at several levels of com-
plexity, from genes to populations, com-
munities, and ecosystems. 

Biodiversity is a key indicator of eco-
system health; changes in assemblages 
result in changing resilience, productiv-
ity, and interactions among species that 
can positively or negatively affect the eco-
system services that sustain human econ-
omies and social well-being (e.g., Worm 
et al., 2006; Duffy et al., 2013; Miloslavich 
et  al., 2018). Satellite remote sensing is 

an important component of marine and 
terrestrial biodiversity studies (Muller-
Karger et  al., 2018a; Skidmore et  al., 
2021). It is a collection of methods that 
provides repeat synoptic coverage of eco-
systems at multiple scales and with link-
ages between species-level information, 
such as distribution and richness, and 
between regional and global information, 
including primary productivity, nutri-
ent cycling, and climate change (Turner 
et  al., 2003, 2015). For oceanic habi-
tats, where advection, mixing, and other 
local heat and material exchange results 
in shifts in the extents of habitats at sub-
seasonal to interannual timescales and 
from submesoscale (hundreds of meters) 
to basinwide (thousands of kilometers) 
spatial scales, synoptic time series pro-
vide oceanographic context to ecological 
observation programs (e.g.,  Hardman-
Mountford et al., 2008; Kavanaugh et al., 
2016). With recent advances in spectral, 
spatial, and temporal resolutions and 
radiometric quality (e.g.,  Werdell et  al., 
2018; Muller-Karger et al., 2018a; Li et al., 
2019), the scientific and conservation 
communities can now better measure 
and model community and ecosystem 
responses to environmental variability, 

including climate change.
One challenge is to establish a sub-

stantive biodiversity information base by 
which we can gauge changes in marine 
ecosystems (Duffy et  al., 2013; Muller-
Karger et al., 2014). In 2014, the National 
Aeronautics and Space Administration 
(NASA), the National Oceanic and 
Atmospheric Administration (NOAA), 
the National Science Foundation 
(NSF), and the Bureau of Ocean and 
Energy Management (BOEM) pooled 
resources under the National Ocean 
Partnership Program (NOPP) to initiate 
a pilot Marine Biodiversity Observation 
Network (MBON). The goal was to estab-
lish a scalable and transferable obser-
vational model for detecting biodiver-
sity and marine habitat variability with 
direct application to resource manage-
ment and decision-making (Figure 1). 
MBON nodes have been established in 
US coastal waters that represent polar, 
temperate, and subtropical ecosystems. 
Four nodes were established in 2014 in 
the Chukchi Sea, in central and southern 
California waters, and in the southeast 
Gulf of Mexico off Florida. Additional 
nodes were initiated in the Pacific 
Northwest and the Gulf of Maine in 2019. 
Practices for these nodes are designed to 
integrate existing or new data relevant 
to their regions and ecosystems and to 
share methods to establish best practices, 
including standardizing data and infor-
mation synthesis approaches (Benson 
et  al., 2021, in this issue) and collection 
of a wide array of remotely sensed biolog-
ical and physical variables that contribute 
to understanding broad biogeographic 
trends across coastal systems.

Here, we highlight where MBON 
research is currently addressing knowl-
edge gaps and methodological advances 
that allow inferences to be drawn at mul-
tiple levels of ecological organization 
using remote sensing. Focusing primar-
ily on ocean color measurements, we first 
describe the current suite of sensors used 
and the ongoing challenges with observ-
ing ocean color in complex coastal zones. 
We then highlight four paths where 

ABSTRACT. Coastal ecosystems are rapidly changing due to human-caused global 
warming, rising sea level, changing circulation patterns, sea ice loss, and acidification 
that in turn alter the productivity and composition of marine biological communi-
ties. In addition, regional pressures associated with growing human populations and 
economies result in changes in infrastructure, land use, and other development; greater 
extraction of fisheries and other natural resources; alteration of benthic seascapes; 
increased pollution; and eutrophication. Understanding biodiversity is fundamental 
to assessing and managing human activities that sustain ecosystem health and services 
and mitigate humankind’s indiscretions. Remote-sensing observations provide rapid 
and synoptic data for assessing biophysical interactions at multiple spatial and tem-
poral scales and thus are useful for monitoring biodiversity in critical coastal zones. 
However, many challenges remain because of complex bio-optical signals, poor sig-
nal retrieval, and suboptimal algorithms. Here, we highlight four approaches in remote 
sensing that complement the Marine Biodiversity Observation Network (MBON). 
MBON observations help quantify plankton community composition, foundation spe-
cies, and unique species habitat relationships, as well as inform species distribution 
models. In concert with in situ observations across multiple platforms, these efforts 
contribute to monitoring biodiversity changes in complex coastal regions by provid-
ing oceanographic context, contributing to algorithm and indicator development, and 
creating linkages between long-term ecological studies, the next generations of satellite 
sensors, and marine ecosystem management. 
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MBON research is addressing these chal-
lenges to observe biodiversity in and 
across optically and ecologically unique 
coastal environments to obtain informa-
tion on plankton community composi-
tion, foundation species, dynamic pelagic 
habitats, and regional-scale species dis-
tributions. We then discuss recommen-
dations that include preparing for new 
sensors, combining sensors for increased 
coverage in space and time, integrat-
ing higher taxonomic detail across mul-
tiple trophic levels, and contributing to 
regional to global indicators that link 
in-water patterns to broad-scale marine 
ecosystem management. 

REMOTE SENSING AND 
BIODIVERSITY: CHALLENGES 
AND CURRENT CAPACITY
Satellite remote sensing, in particular 
ocean color, can contribute to monitoring 
biological patterns and processes by pro-
viding information on biomass or dom-
inant taxa of lower trophic levels. Ocean 
color instruments measure ultraviolet, 
visible, and near infrared light at the top 
of Earth’s atmosphere, and atmospheric 

correction algorithms are applied to 
obtain remote-sensing reflectances (Rrs), 
a measure of the color of Earth’s sur-
face. Rrs are then related to biogeochem-
ical quantities of interest using statistics 
or descriptive models. In marine environ-
ments, common biogeochemical quan-
tities include chlorophyll a (Chl-a), the 
concentration of particles (inorganic and 
organic, including phytoplankton), dis-
solved colored molecules, and seawater. 
All these “constituents” alter light through 
absorption and/or scattering across dif-
ferent wavelengths. The physical, bio-
logical, geological, and chemical com-
positions of coastal and marine habitats 
are complex, and different processes and 
materials affect electromagnetic radiation 
differently— so measuring the complexity 
of these habitats requires sensors with dif-
ferent spatial, temporal, and spectral res-
olutions. Thus, a multi- sensor approach 
is often required for ecological studies 
to contend with the hydrodynamic and 
bio-optical complexity of coastal zones.

Currently, various remote-sensing 
platforms provide broad capacity for 
observing biophysical phenomena and 

patterns of interest that affect biodi-
versity across a hierarchy of space and 
time (Figure 2). Most operational prod-
ucts are derived from multi-spectral and 
passive sensors that measure changes in 
reflected sunlight. At the smallest spa-
tial scales (centimeters to meters), sub-
orbital sensors, including those mounted 
on unoccupied aerial systems, have been 
used to observe benthic habitat charac-
teristics such as the diversity of corals and 
algae (including patches) present (Collin 
et  al., 2018; Johnston, 2019; Bell et  al., 
2020b; Monteiro et al., 2021). While the 
nanosatellite constellations, for exam-
ple, CubeSats, can provide high spatial 
(4 m) and high temporal resolution infor-
mation to monitor terrestrial systems 
(e.g.,  Aragon et  al., 2021), their spectral 
resolutions and radiometric qualities cur-
rently limit their application to marine 
ecosystems. However, at scales of tens of 
meters, Landsat has provided time series 
of multispectral data since the 1970s at 
30 m resolution and 16-day repeat. This 
allows assessment of slower growing, 
patch-forming organisms, including large 
coral reefs, kelp forests, seagrasses, and 

FIGURE 1. Satellite remote sens-
ing and the Marine Biological 
Observation Network. Red squares 
denote the original demonstration 
nodes in waters of the Arctic, Central 
California, Southern California Bight, 
and Florida Keys. Green squares 
indicate nodes added in 2019 in 
the Northern California Current/
Pacific Northwest and the Gulf of 
Maine. The blue square locates an 
ongoing partnership site with the 
Smithsonian Institution. Each node 
represents a unique coastal environ-
ment with variability in biophysical 
dynamics where in situ observations 
complement remote sensing. The 
figure highlights biological and phys-
ical variables that are all available 
with current remote sensing, includ-
ing sea ice, sea surface tempera-
ture (SST), sea surface height (SSH), 
salinity (SAL), and chlorophyll a 
(Chl-a), along with chromophoric dis-
solved organic matter (CDOM) from 
ocean color (see section on Remote 
Sensing and Biodiversity: Challenges 
and Current Capacity). 
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mangroves, particularly with Landsat 8’s 
improved ocean color sensitivity (see 
Cavanaugh et  al., 2011, 2019; Bell et  al., 
2018, 2020a; Hamilton et al., 2020). 

Over scales of hundreds of meters to 
kilometers, the time evolution of plank-
ton communities can be observed over 
a range of temporal and spatial scales 
using ocean color sensors, which have 
increased sensitivity to account for the 
absorption of light by water. The Coastal 
Zone Color Scanner (CZCS) provided 
proof-of-concept with imagery collected 
between 1978 and 1986. Since 1997, near-
daily, multispectral ocean color at ~1 km 
has been provided by polar orbiting sat-
ellites launched by Japan, the European 
Union, the United States, India, China, 
and several other countries. In the United 
States, sensors have progressed from the 
Sea-viewing Wide Field-of-view Sensor 
(SeaWiFS; 1997–2010) to the Moderate 
Resolution Imaging Spectroradiometer 
(MODIS; 2002–present), and finally to 
the Joint Polar Satellite System (JPSS) 
Visible Infrared Imager Radiometer 
Suite (VIIRS; 2012–present). In 2015, the 
European Space Agency (ESA) launched 
the Sentinel constellation, which provides 
higher spatial resolution (~300 m for 
Sentinel-3) and improved repeat cover-
age by flying sensors on two companion 
satellites. Repeat observations at scales 
of minutes to hours can be acquired for 
smaller regions using geostationary sat-
ellites; the South Korean Geostationary 
Ocean Color Imager (GOCI) provides 
ocean color imagery of marginal seas 
around the Korean peninsula approxi-
mately eight times per day. 

Together, multispectral imagers have 
provided information on phytoplank-
ton Chl-a (Hu et  al., 2012; Siegel et  al. 
2013), chromophoric dissolved organic 
matter (Siegel et  al., 2002; Werdell 
et  al., 2013), chlorophyll fluorescence 
(a metric of phytoplankton physiology; 
Behrenfeld, et  al., 2009), particle back-
scatter (Loisel et  al., 2006; Bisson et  al., 
2021), and particulate organic carbon 
(Stramski et  al., 2008). These observa-
tions from passive sensors can provide 

frequent and long-term measurements 
of surface ocean constituents to depths 
ranging from a few centimeters to several 
tens of meters, depending on the turbid-
ity of the water and whether there is rela-
tively high solar illumination under clear-
sky conditions. Yet, they have been used 
to estimate primary productivity in upper 
ocean waters (Behrenfeld and Falkowski, 
1997; Westberry et al., 2005) and the flux 
of organic particulate material to the bot-
tom of the ocean (Muller-Karger et  al., 
2005) using simple but effective models.

Active light detection and ranging 
(lidar) observations complement pas-
sive ocean color remote sensing. Lidar 
uses light from a pulsed laser to observe 
the ocean, and it works during day or 
night, through moderate cloud and aero-
sol interference, and in polar darkness 
(Behrenfeld et al., 2017). Lidar platforms’ 
capacity to provide information on verti-
cal variation in particles over the upper 
few tens of meters of the water column 

(e.g., Lu et al., 2014; Hostetler et al., 2018) 
allows their use as complements to pas-
sive sensor systems that can only obtain a 
single integrated value for surface waters. 
Global-scale particulate organic carbon 
retrievals from space-based lidar obser-
vations have been available since 2006 in 
measurements from the Cloud-Aerosol 
Lidar with Orthogonal Polarization 
(CALIOP) sensor (Behrenfeld et  al., 
2013) and more recently from IceSAT2 
(Lu et  al., 2020). Due to their near- 
nadir viewing geometry, lidar tracks 
have to date offered limited spatial cov-
erage and long repeat times (16–60 days), 
and thus are best used in conjunction 
with passive sensors. 

Relative to the open ocean, coastal 
zones have many different constitu-
ents that continuously and often rapidly 
change colors and turbidity conditions. 
Measuring this complexity requires sen-
sors with higher spatiotemporal resolu-
tions, radiometric qualities, and spectral 
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FIGURE 2. Stommel diagram showing the connections between satellite and in situ ocean observa-
tions and the spatial and temporal scales of biological organization and basic processes of interest. 
Spatial and temporal coverages highlight the current sampling capacity of the Marine Biodiversity 
Observation Network where in situ measurements can sample at finer spatiotemporal and taxo-
nomic resolution. Low predictability and high apparent predictability (Wiens, 1989) denote spatial 
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onomic resolution that can be resolved. Both current and future sensors are listed, with future 
sensors italicized. 
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resolutions (see Mouw et  al., 2015, and 
Muller-Karger et al., 2018b, for reviews). 
Coastal systems are highly dynamic and 
contain fine-scale features (Davis et  al., 
2007; Moses et al., 2017). Their character-
istics include tidal exchange and upwell-
ing, riverine/ freshwater inputs, inter-
action between water and bathymetry, 
and complex coastline shapes, and some 
locations are subject to sea ice dynamics. 
Coastal ecosystems are productive, with 
high particle and dissolved organic matter 
loads that attenuate light in the water, fur-
ther reducing the signal of interest leav-
ing the water (Cannizzaro and Carder, 
2006; Tzortziou et  al., 2007). Both ben-
thic and plankton producers fuel coastal 
food webs and can drive biodiversity pat-
terns; it is difficult to separate these sig-
nals without high spectral measurements 
over long time periods (Dekker et  al., 
2007). Nearshore suspended sediments 
are bright and can swamp sensitive ocean 
color sensors, affecting both in-water 
algorithms and atmospheric corrections. 
Dynamic and diverse airborne inputs 
near land, including dust, aerosols, and 
pollution, make atmospheric correction 
challenging. Water masses with differ-
ent optical constituents may mix at mul-
tiple scales (e.g., Kavanaugh et al., 2014a, 
2016; Palacios et  al., 2012) and may be 
advected from their origins. Many global 
ocean color algorithms assume an aver-
age or constant water mass composi-
tion, which limits their direct application 
in complex coastal zones. MBON sci-
ence seeks to address these challenges in 
order to meet current needs while bridg-
ing between current observational capac-
ity and future sensors.

In marine systems, the scale of detec-
tion is affected by movement (horizontal 
and vertical) in addition to physical mix-
ing processes, which effectively smear 
the spatial footprints and timescales to 
which potential mechanisms may be 
attributed (Kavanaugh et al., 2016); this 
leads to high apparent prediction (sensu 
Wiens, 1989) but incomplete under-
standing of mechanisms. Sampling the 
environment only at fine spatial scales 

typically gives little predictive capacity 
for large-scale processes (low predict-
ability, Figure 2). Sampling shorter-term 
processes infrequently or over larger 
scales misses key features and charac-
teristics of the processes being observed, 
aliasing signals of interest. Furthermore, 
variability in the vertical (e.g., subsurface 
foraging, diel migration, and productiv-
ity in deeper layers) is mostly invisible 
to satellites. 

Remote-sensing tools are often used 
in conjunction with a network of ground 
observations and experiments to lend 
mechanistic understanding of the pro-
cesses underlying patterns and to pro-
vide information from depths to which 
many satellites cannot see. MBON nodes 
are strategically linked to other programs, 
including the US Integrated Ocean 
Observing System (IOOS), the Long Term 
Ecological Research (LTER) network, 
and the National Marine Sanctuaries, 
along with various state and federal agen-
cies to include additional observations, 
mechanistic insights, and contexts (see 
other articles in this issue). These groups 
also benefit, as they serve as the ultimate 
“users” of new information generated by 
the ability of MBON to integrate multiple 
information types and data streams. The 
exchange of data and knowledge is itera-
tive and cooperative (e.g., Iwamoto et al., 
2019), with remotely sensed and in situ 
data merged to meet current science and 
management needs. 

MBON: FOUR METHODS FOR 
MOVING FORWARD
Remote sensing offers four methods for 
measuring biodiversity, three of them 
directly synoptic. The first derives infor-
mation on phytoplankton community 
composition from remote-sensing reflec-
tance spectra (see reviews in IOCCG, 
2014; Bracher et  al., 2017; Mouw et  al., 
2017). This method makes the general 
assumption that primary producer com-
munity composition is related to opti-
cally discernible pigments or cell struc-
tures. The second method maps and 
quantifies the spatial distribution and 

temporal dynamics of foundation species 
(e.g., kelp forests, coral reefs, forage spe-
cies) that structure populations and 
communities (e.g., Angelini et al., 2011; 
Castorani et al., 2018; Lamy et al., 2020). 
The third combines biophysical infor-
mation from multiple sensors to iden-
tify features (e.g., fronts, eddies) or habi-
tat patches (e.g., seascapes) that can map 
the quality and geographic extents of 
pelagic habitats (Oliver and Irwin, 2008; 
Kavanaugh et al., 2014a, 2016, 2018). A 
fourth indirectly synoptic method utilizes 
relationships among remotely sensed 
biophysical variables and occurrences or 
abundances of tagged or surveyed organ-
isms to map species distributions and 
biodiversity patterns (e.g., Cimino et al., 
2020; Gagné et al., 2020). All four meth-
ods assume to some degree that primary 
producer community structure relates to 
the structure of higher trophic level com-
munities and that phenological changes 
in primary producer communities prop-
agate throughout food webs (Vargas 
et al., 2006; Chavez et al., 2011; Cermeño 
et  al., 2013, 2014; Vallina et  al., 2017; 
Santora et al., 2017). 

Method 1. Phytoplankton 
Community Composition Derived 
from Remote-Sensing Reflectance
Phytoplankton form the base of the oce-
anic food web, providing food for ecolog-
ically and commercially important fish-
eries and fueling the exchange of carbon 
between the ocean and the atmosphere. 
Most phytoplankton are beneficial; how-
ever, some species can result in toxic 
or noxious blooms that can have nega-
tive immediate or cumulative effects on 
higher trophic levels, including humans 
(e.g., Stumpf, 2001; D.M. Anderson et al., 
2009; C.R. Anderson et  al., 2015). Thus, 
understanding and monitoring changes 
in plankton abundance and structure is 
a vital component of coastal ecosystem 
monitoring and management. 

Phytoplankton species can be parsed 
into several classification types, based 
on a mixture of heuristics including size, 
geochemical function (e.g.,  silica pro-
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ducing, nitrogen fixing), or taxonomic 
groups (e.g., diatoms, dinoflagellates, cya-
nobacteria) that are expressed through 
accessory pigments or absorption spec-
tra (IOCCG, 2014; Mouw et  al., 2017; 
Bracher et al., 2019). While broad classi-
fications allow detection through multi- 
spectral methods, there are challenges 
in all classification types— groupings 
are often overly broad and misclassified. 

For example, grouping cyanobacteria all 
together lumps genetically and ecolog-
ically distinct taxa (Scanlan and West, 
2002). Classification of diatoms based on 
their main accessory pigment fucoxan-
thin is imprecise because several dinofla-
gellate species and some haptophytes also 
contain fucoxanthin (e.g.,  Wright et  al., 
2005; Dierssen et al., 2020). Furthermore, 
dinoflagellates themselves are not strictly 
phytoplankton, but they have many het-
erotrophic and mixotrophic representa-
tives. Obtaining the taxonomic details of 
microorganisms has traditionally relied 
on costly and time-consuming genetic 
and microscopy methods, with expertise 
in the latter becoming increasingly rare. 
Thus, the longer time series that are crit-
ical for quantifying baselines and trends 
may only focus on imprecise classifica-
tions that characterize polyphyletic dif-
ferences through marker pigments or 
coarse differences in spectra.

Several algorithms have been devel-
oped to relate the optical constituents 
(spectra, shape, pigments) of various 
plankton groups to multispectral remote 
sensing. Single bloom-forming species 
such as coccolithophores (Moore et  al., 
2012), Trichodesmium sp. (Subramanian 
et  al., 2001; Westberry et  al., 2005), or 
diatoms (Kavanaugh et al., 2015; Kramer 

et  al., 2018) can sometimes be resolved, 
depending on local ecology. Multi-
species algorithms involving domi-
nant taxa (Alvain et  al., 2008), commu-
nity composition (e.g., Hirata et al., 2011; 
Brewin et al., 2012; Bracher et al., 2015), 
or phytoplankton community size dis-
tribution (e.g.,  Kostadinov et  al., 2010, 
2016; Mouw and Yoder, 2010; Bricaud 
et al., 2012) have been determined using 

spectral approaches that include both 
absorbance and scattering properties 
derived from moderate resolution remote 
sensing reflectances (see Bracher et  al., 
2019, for review). Identifying dominant 
phytoplankton is important for biogeo-
chemical applications in order to iden-
tify and track harmful algal blooms and 
to document the distribution, extent, and 
phenology of the large beneficial blooms 
on which organisms depend. Size-class 
algorithms are useful because much of 
the ocean trophic structure depends on 
the size distribution of the phytoplankton 
(e.g., Lombard et al., 2019). 

Phytoplankton community composi-
tion (PCC) algorithms vary in their 
degrees of spectral complexity. Two gen-
eral approaches exist, abundance- based 
and spectral methods. Abundance- based 
algorithms rely on the empirical relation-
ship of accessory pigments or size classes 
to the magnitude of absorption at a lim-
ited set of single wavelengths or Chl-a con-
centrations (Uitz et al., 2006; Hirata et al., 
2011). In many regions, however, these 
relationships break down due to physio-
logical variability in the ratios of acces-
sory pigments to Chl-a (e.g., White et al., 
2015), multiple co-occurring taxa con-
taining the dominant indicator pigment 
and thus spectra (e.g., diatoms and some 

dinoflagellates), imperfect assumptions 
of size (e.g., diatoms can be <20 μm), or 
poor retrieval/high contamination of 
the satellite Chl-a signal. Spectral algo-
rithms focus primarily on the variabil-
ity of the absorption and scattering of 
particles across multiple wavelengths 
(Montes-Hugo et  al., 2008; Kostadinov 
et al., 2009; Mouw et al., 2010; Catlett and 
Siegel, 2018). Spectral absorption algo-

rithms focus on the spectral variation of 
accessory pigment absorption by differ-
ent taxa (e.g.,  Ciotti and Bricaud, 2006; 
Chase et  al., 2017; Catlett and Siegel, 
2018) or the role of the packaging effect 
on phytoplankton absorption spec-
tra (Ciotti and Bricaud, 2006; Bricaud 
et  al., 2012). Spectral scattering algo-
rithms include size class algorithms that 
exploit the relationship of particle size 
distribution (PSD) to the spectral slope 
of beam attenuation or backscattering 
using inversion (e.g., Loisel and Stramski, 
2000; Boss and Pegau, 2001; Kostadinov 
et al., 2009; Lee et al., 2010; Werdell et al., 
2013) or empirical relationships (Carder 
et  al., 2004; Montes-Hugo et  al., 2008; 
Mouw et al., 2010).

Most PCC algorithms have been 
tuned to large-scale global gradients, 
thus missing some of the optical com-
plexity in coastal zones (Maritorena 
et  al., 2002; Siegel et  al., 2002; Werdell 
et  al., 2013). Coastal zones tend to have 
strong non-algal bio-optical constitu-
ents that vary in space and time, so tun-
ing global PCC algorithms for local 
coastal conditions remains an import-
ant challenge and area of active research 
(e.g., Kramer et al., 2018). 

Ongoing MBON efforts related to sat-
ellite-derived plankton community com-

 “Understanding and monitoring changes in plankton abundance and structure is 

a vital component of coastal ecosystem monitoring and management.”
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position focus on improving the skill of 
global algorithms in regional oceans, 
creating more quantitative test records. 
These efforts include repeated surveys to 
compare absorption spectra of blooms 
dominated by different taxa, includ-
ing diatoms, dinoflagellates, and others, 
in artificial controls and natural assem-
blages in the Santa Barbara Chanel and 
the Florida Keys (Figure 3a,b; see also 
Catlett and Siegel, 2018; Montes et  al., 
2020; Catlett et  al., 2021). Plankton 

types can be distinguished in natural 
assemblages by investigating spectral 
derivatives (Figure 3b) that reveal sig-
nals from accessory pigments of differ-
ent groups. The relative contributions 
of algal particles, detritus, and dissolved 
constituents can also be compared across 
ecologically and optically distinct water 
masses (Figure 3c; see also Montes et al., 
2020). These activities will all contribute 
to NASA’s upcoming Plankton, Aerosol, 
Cloud, ocean Ecosystem (PACE) and 

Surface Biology and Geology (SBG) mis-
sions. Both missions will include hyper-
spectral sensors to better discern inflec-
tions in the radiometric spectra that are 
caused by different taxonomic groups; 
these will be discussed in greater detail 
in a following section. Where possible, 
MBON activities compare and combine 
co-occurring records of different taxo-
nomic and spectral resolution (Catlett 
and Siegel, 2018; Montes et al., 2020) to 
link historic ocean time series with the 
capabilities of future sensors.

Method 2. Remote Sensing of 
Foundation Species 
Foundation species create locally stabi-
lized environments (Lamy et  al., 2020) 
that provide refuges (Castorani et  al., 
2018) or isolated patches of different, 
more-complex habitats that can result 
in increased local or regional biodiver-
sity. In marine environments, these spe-
cies include primary producers such as 
mangroves, kelps, and seagrasses as well 
as reef-forming groups such as corals 
and bivalves (Figure 4). Foundation spe-
cies may also provide critical habitats for 
reproduction and population growth of 
ecologically and economically import-
ant fish species. 

Field-based monitoring of foundation 
species can be time-consuming, costly, 
and spatially incomplete, and it requires 
access and often specialized equipment 
(e.g.,  scuba, underwater imaging) along 
with on-the-ground expert knowledge. 
Compared to environmental knowledge, 
remote sensing can increase coverage, be 
time efficient, and in some cases more 
accurately estimate habitat distributions 
(Selgrath et  al., 2016). Limitations to 
remote sensing include incomplete hor-
izontal or vertical coverage, challenges 
due to spectral unmixing, and accu-
racy of optical data that can be affected 
by depth and turbidity (Goodman et al., 
2013; Hedley et  al., 2016). Furthermore, 
extraction of taxonomic annotations from 
imagery can be time-consuming and 
computationally taxing. Nevertheless, a 
broad suite of remote-sensing technol-

FIGURE 3. Development of phytoplankton community composition algorithms for temperate 
upwelling systems and subtropical shallow shelves. (a) Representative particulate/phytoplankton 
absorption spectra from blooms of four different phytoplankton groups, assessed as the highest 
observed concentration of each phytoplankton group’s biomarker pigment over a 12-year, approxi-
mately monthly time series from the Santa Barbara Channel, California (see Catlett and Siegel, 2018, 
for details). (b) Mean absorption spectra and (c) second derivatives of phytoplankton communities 
collected in (d) two seascape categories (highlighted with black boxes on the color bar) and sea-
sons on the Florida shelf (see Montes et al., 2020). Second derivative analyses allow the quantifica-
tion of unique, or the relative dominance of, pigment biomarkers, where fucoxanthin is indicative of 
nearshore diatom populations in optically shallow seascape water masses and zeaxanthin is indic-
ative of cyanobacteria (e.g., Synechococcus sp. and Prochlorococcus sp.)
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ogy that includes both active and passive 
methods deployed on various platforms 
has been used successfully (Goodman 
et  al., 2013; Xu and Zhao, 2014; Hedley 
et al., 2016; Purkis, 2018). 

Both suborbital and satellite platforms 
are common today for both active and 
passive remote sensing of foundation 
species. Airborne laser scanners are cur-
rently the best available technology for 
providing detailed bathymetry, geomor-
phology, and rugosity for water depths 
<50 m and surveys <100 km2 (Rohmann 
and Monaco, 2005; Wedding et al., 2008). 
Airborne hyperspectral remote sensing 
(also known as imaging spectroscopy) is 
at the technological forefront of passive 
optical sensing for providing the most 
detailed benthic habitat maps (Goodman 
et al., 2013; Hedley, 2018; Foo and Asner, 
2019), successfully classifying benthos 
into bottom types such as fleshy algae, 
turf algae, seagrass, coral, and coral rubble 
(Hochberg et al., 2003). By accessing data 
over time, changes in benthic maps can 

inform changes in land use, coastal devel-
opment, and reef connectivity (Mumby 
et al., 2004; Raitsos et al., 2017). 

A good example of the characteriza-
tion of habitat-forming species using 
remote- sensing observations is the recent 
use of multispectral Landsat data to assess 
changes in the canopy biomass distribu-
tion of giant kelp, Macrocystis (Cavanaugh 
et  al., 2011; Figure 4a,b). MBON affil-
iates are building on this work to assess 
giant kelp population dynamics on local 
and regional spatial scales (Reed et  al., 
2011; Bell et al., 2018, 2020a) and changes 
in giant kelp population dynamics and 
higher trophic level responses to recent 
ocean warming events (Reed et al., 2016; 
Cavanaugh et  al., 2019). Recent work 
using Landsat imagery has also extended 
these quantitative analyses of canopy bio-
mass to bull kelp, Nereocystis, (Hamilton 
et  al., 2020), and enabled the mapping 
of kelp populations throughout the US 
West Coast and Alaska over time. In the 
near future, the spectral capabilities avail-

able from NASA’s upcoming SBG mis-
sion (Cawse-Nicholson et  al., 2021) will 
support remote sensing of giant kelp can-
opy pigment concentrations, nitrogen 
content, physiological condition, and 
rates of primary production (Bell et  al., 
2015, 2018, 2020b; recent work of authors 
Bell and Siegel). MBON research on 
foundation species provides important 
preparation for SBG and addresses chal-
lenges in integrating sensors with differ-
ent radiometric qualities to assess benthic 
vegetation through time. 

Analogous studies are occurring in 
subtropical waters within and adjacent 
to the Florida Keys, where multi-scale 
monitoring of seagrasses and coral types 
is assessed using both multi- and hyper-
spectral methods (Figure 4c–f). Landsat 
and commercial satellite imagery has 
been used to characterize shallow ben-
thic habitats across south Florida waters 
and to assess changes in their cover 
extent and distribution over time due to 
multiple pressures that include thermal 
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FIGURE 4. Development of foundation species algorithms for moderate spectral resolution, higher spatial resolution sensors. (a) Mean Macrocystis 
canopy biomass (Cavanaugh et al., 2011) derived from Landsat satellite sensors. Image credit NASA; SBC LTER Site (b) Kelp persistence for San Miguel 
Island, California, using kelp canopy data derived from Landsat sensors. Persistence is defined as the percentage of years when kelp canopy was iden-
tified in a pixel at least once during a calendar year from 1984 to 2020. (c) Sentinel-2 composite image of the Florida Keys region where MBON sur-
veys are regularly conducted. (d) Instrument used for in situ measurements of upwelling and downwelling irradiances above a patch reef during a field 
campaign in May 22, 2012, near Sugarloaf Key (red marker in c). (e) Reflectances over different depths above seagrasses. (f) Reflectances over differ-
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stress, water quality degradation, and 
disease (Palandro et al., 2003; Rohmann 
and Monaco, 2005). Subsurface and 
above-water radiometric measurements 
collected by MBON researchers in com-
bination with satellite ocean color data 
have facilitated studies on the effect of 
water quality on seagrass and patch reef 
productivity in the Florida Keys (Barnes 
et  al., 2014, 2015; Toro-Farmer et  al., 
2016; Hedley et  al., 2017). Coral diver-
sity in the Florida Keys has been linked 
to satellite sea surface temperature (SST), 
with percent cover of species of high 
conservation priority highest in patch 
reefs exposed to intermediate SST vari-
ance (~7° to 11°C; see Vega-Rodriguez 
et  al., 2015). SST imagery is now used 
operationally to generate thermal stress 
products developed by NOAA’s Coral 
Reef Watch Program (Liu et  al., 2018) 
in support of coral reef monitoring and 
management initiatives led by NOAA 
and the Florida Wildlife Commission 
(McCarthy et al., 2017). 

Method 3. Pelagic Seascape 
Ecology: Tracking Dynamic 
Features and Habitats
Seascape ecology can be broadly defined 
as the reciprocal interaction of organ-
isms with the spatiotemporal vari-
ability of their environment or habitat 
(Kavanaugh et al., 2014a, 2016; Pittman, 
2017). Advances in observational capac-
ity have led to improved characteriza-
tion of dynamic habitat, better tracking 
of organisms as they move through hab-
itats, and improved modeling of species- 
habitat relationships. Satellite remote 
sensing informs several kinds of seascape- 
type analyses, including identification 
of fronts (Kahru et al., 2012), the role of 
Lagrangian coherent structures (LCSs) in 
shaping niches and fisheries (Scales et al., 
2018; Watson et  al., 2018;), the use and 
occupancy of mesoscale eddies by organ-
isms, many species distribution mod-
els, and the classification and identifica-
tion of dynamic pelagic habitats (Oliver 
and Irwin, 2008; Irwin and Oliver, 2009; 
Kavanaugh et  al., 2016, 2018). Once 

relationships are validated, understand-
ing biodiversity changes through habitat 
alterations may allow tracking of shift-
ing communities even when sensor lim-
itations (e.g., spectral resolution) may not 
allow direct assessment of taxa. 

Surface flow fields from altimetry 
and high-frequency (HF) radar can sup-
ply advective information to delineate 
features or assess underlying processes 
(Messié and Chavez, 2017; Matson et al., 
2019; Catlett et  al., 2021). For exam-
ple, LCSs, areas of attraction and repul-
sion around frontal features, define 
fluid dynamical niches and contribute 
to regional biodiversity (d’Ovidio et  al., 
2004; Cotté et al., 2011; Scales et al., 2018; 
Watson et  al., 2018). MBON research-
ers used a combination of ocean color 
and HF radar to partition the spatial 
from the temporal part of unique cocco-
lithophorid blooms in the Santa Barbara 
Channel (Matson et  al., 2019) and to 
attribute changes in dinoflagellate domi-
nance to anomalous advection associated 
with long-term shifts in the North Pacific 
Gyre (Catlett et al., 2021). Mesoscale fea-
tures can increase the spatial heterogene-
ity of water masses but also enhance dis-
persal (Clayton et  al., 2013), structuring 
habitat for zooplankton and larval fishes 
(e.g.,  Govoni et  al., 2010), mesopelagic 
communities (Della Penna and Gaube, 
2020), and phytoplankton (Schulien 
et  al., 2020), and attracting foragers or 
predators with diverse foraging strate-
gies (Oliver et  al., 2019). In the Gulf of 
Mexico, MBON researchers used time 
series of ocean color, sea surface tem-
perature, and altimetry to document river 
and other coastal and shelf waters reach-
ing the Florida Keys (Le Hénaff et  al., 
2019). Depending on seasonal extensions 
of the Loop Current, high Chl-a water 
came from the Mississippi outflow or 
from as far away as the Campeche Bank 
(Otis et al., 2019). 

Satellite-derived seascapes (Figure 5a,b) 
have been used to track features and their 
variability to identify important phyto-
plankton assemblage habitats for fisher-
ies (Kavanaugh et  al., 2015, 2016, 2018; 

Montes et al., 2020). Dynamic seascapes 
represent unique bio-optical and phys-
ical constituents (Kavanaugh et  al., 
2014a,b; Montes et  al., 2020) and doc-
ument changes in pelagic habitat asso-
ciated with seasonal, interannual, and 
event-scale shifts in environmental forc-
ing (Kavanaugh et al., 2017, 2018; Santora 
et  al., 2021, in this issue). Seascapes are 
classified in a dynamic and hierarchi-
cal framework using synoptic time series 
of SST, altimetry, salinity, sea ice con-
centration from microwave brightness, 
and several ocean color variables includ-
ing Chl-a, normalized fluorescent line 
height, and chromophoric dissolved 
organic matter. Some MBON seascape 
case studies are focused on optimizing 
and comparing PCC algorithms as well 
as quantifying species-habitat relation-
ships of plankton across the California 
Current and the Florida Keys (Montes 
et al., 2020), of zooplankton and seabirds 
in the Arctic, and of pelagic forage species 
in the California Current (Santora et al., 
2021, in this issue; recent work of author 
Klajbor). In the Arctic, hotspots of ben-
thic production and diversity identified 
in the shallow Chukchi and Beaufort Seas 
by the Distributed Biological Observatory 
(e.g., Grebmeier et al., 2012) are linked to 
different seascapes (recent work of author 
Kavanaugh). Most recently, seascapes 
characterized using vessel automatic 
identification system data have been uti-
lized in fisheries conservation to track 
movement of fishing vessels in and out of 
exclusive economic zones in response to 
changing ocean features (Woodill et  al., 
2021). Seascapes are produced operation-
ally through an MBON partnership with 
NOAA CoastWatch (https://coastwatch. 
noaa.gov/ cw/ satellite- data- products/ 
multi- parameter- models/ seascape- 
pelagic- habitat- classification.html).

Method 4. Species Distribution 
and Semi-Analytical Models
Dynamic models such as species dis-
tribution models (SDMs; Figure 5c; 
e.g.,  Cimino et  al., 2020; Gagné et  al., 
2020) and semi-analytical models (Messié 

https://coastwatch.noaa.gov/cw/satellite-data-products/multi-parameter-models/seascape-pelagic-habitat-classification.html
https://coastwatch.noaa.gov/cw/satellite-data-products/multi-parameter-models/seascape-pelagic-habitat-classification.html
https://coastwatch.noaa.gov/cw/satellite-data-products/multi-parameter-models/seascape-pelagic-habitat-classification.html
https://coastwatch.noaa.gov/cw/satellite-data-products/multi-parameter-models/seascape-pelagic-habitat-classification.html
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and Chavez, 2017) use environmen-
tal variables from satellite remote sens-
ing to predict the occupancy or abun-
dances of species ranging from plankton 
(e.g., Righetti et al., 2019; Elizondo et al., 
2021) to higher trophic levels, includ-
ing endangered species (Breece et  al., 
2018). Predictive models can also acquire 
water column information (e.g.,  strat-
ification, mixed layer depth) from 
data-assimilative ocean models, which 
use satellite data (e.g.,  SST, altimetry) 
to improve model realism (Neveu et  al., 
2016). Species response data come in dif-
ferent forms (e.g.,  presence/absence or 
abundance) and originate from routine 
ship-based surveys, biologging, acous-
tics, fisheries data, or animal telemetry 
(e.g., Sequeira et al., 2021); all of these are 
types of data that many MBON partner 
organizations collect.

MBON affiliates have used advanced 
satellite-based monitoring, particularly of 
zooplankton and forage species. The spa-
tial extent of krill, an important source 
of food for many marine mammals and 
birds in the California Current, was pre-
dicted in an SDM using depth, SST, 
Chl-a, and upwelling indices (including 
transport and sea surface height; Cimino 
et  al., 2020). Satellite data-assimilative 
models have also documented habitat 

compression of forage species and cal-
culated whale entanglement risk associ-
ated with recent marine heatwaves in the 
Northeast Pacific (Santora et  al., 2020). 
Finally, semi-analytical models that retain 
some biogeochemical or ecological mech-
anisms, forced by remote-sensing prod-
ucts, have reproduced the spatiotemporal 
evolution of key plankton species such as 
copepods and krill (Messié and Chavez, 
2017; Santora et  al., 2021, in this issue) 
and also nitrogen fixers (Messié et  al., 
2020). This “growth-advection” model 
works by mapping the evolution of plank-
ton communities along satellite-derived 
current trajectories from a known nutri-
ent supply process (e.g.,  coastal upwell-
ing along the US West Coast). Together, 
these models represent a complemen-
tary range of statistical (e.g.,  SDMs) 
to partially mechanistic (e.g.,  growth- 
advection) uses of remote-sensing data; 
a powerful approach lies in considering 
both together and using their agreement 
or disagreement as a measure of uncer-
tainty. Furthermore, these models can 
also be turned into real-time or predictive 
decision support tools, given sustained 
availability of remotely sensed products 
(Howell et  al., 2015; Hazen et  al., 2018; 
Welch et  al., 2019; Santora et  al., 2021, 
in this issue).

MBON NEXT STEPS: BRIDGING 
THE NEXT GENERATION 
SATELLITES, TECHNOLOGICAL 
ADVANCES, AND MARINE 
ECOSYSTEM MANAGEMENT 
MBON researchers have advanced 
remote-sensing capabilities in a broad 
spectrum of applications that can assist in 
understanding and monitoring patterns 
across several trophic levels, demonstrat-
ing that MBON can serve as a bridge 
between remote-sensing science, ecology, 
and conservation. The next steps discussed 
below describe four ways in which the 
marine biodiversity science and manage-
ment communities can prepare for future 
science capabilities that increase spa-
tial, temporal, and taxonomic resolution 
and contribute to a suite of biodiversity- 
relevant indicators for marine ecosystem 
management.

Prepare for Hyperspectral Sensors 
NASA’s PACE and SBG, due to be 
launched in the next two years, will 
resolve many of the limitations discussed 
above and advance our capacity to view 
biodiversity and ocean health from space. 
PACE sensors include the Ocean Color 
Instrument, a hyperspectral radiometer 
that will allow scientists to better discern 
the minute inflections in the radiometric 

FIGURE 5. Multi-satellite integration to classify habitats and predict species distributions. Dominant 
(mode) seascape (a) and temporal variability (b) of seascape extent for the California shelf. Declines in 
mesotrophic (cyan) and nearshore high productivity (yellow and red) seascapes are evident during the 
2014 marine heatwave. These seascapes also have different occupancies and abundances of import-
ant foragers like anchovy, sardines, juvenile rockfish, and krill (recent work of author Klajbor; Santora 
et  al., 2021, in this issue). (c) Synoptic 2019 species distribution prediction for krill (Thysanoessa 
spinifera), with actual abundances of krill sampled by trawl as part of NOAA’s Rockfish Recruitment 
Ecosystem Assessment Surveys shown in white circles (see Cimino et al., 2020).
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spectra that are caused by unique tax-
onomic groups. PACE will also include 
two polarimeters whose spatial coverage, 
accuracy, and spectral and angular sam-
pling will measure diverse atmospheric 
constituents and improve atmospheric 
correction in complex coastal regions. 
SBG, based on the Hyperspectral Infrared 
Imager (HysPIRI), will complement 
PACE observations by collecting visi-
ble through shortwave infrared (VSWIR) 
and thermal infrared (TIR) spectroscopic 
data over shelf and coastal waters with 
spatial resolution (tens of meter pixels) 
similar to that of Landsat, revisit times of 
days, and temporal resolutions to weeks 
(Schneider et al., 2019; Cawse-Nicholson 
et  al., 2021). As with PACE, SBG will 
enable improved atmospheric correc-
tion in nearshore waters and thus better- 
resolved PCC detection and water quality 
properties. Hyperspectral bands will pro-
vide the necessary information for simul-
taneous determinations of foundation 
species abundance and physiology, as 
well as improved benthic classifications 
and water quality assessments. Habitat 
characterization and mapping will be 
achieved by merging SBG records with 
suborbital spectroscopic measurements, 
such as continuous bathymetric esti-
mates of coral reef environments. Finally, 
while earlier in its planning stages, the 
Geosynchronous Littoral Imaging and 
Monitoring Radiometer (GLIMR) is 
designed as a geostationary mission that 
will provide hyperspectral imagery of 
the Gulf of Mexico and adjacent regions. 
Planned to launch in 2026–2027, GLIMR 
will provide 10–15 observations per day 
to better monitor the temporal dynamics 
of oil spills and plankton blooms. 

Recent reviews and workshop proceed-
ings have highlighted the need for coor-
dinated hyperspectral in situ measure-
ments and more complex modeling with 
more relevant units (e.g.,  IOCCG, 2020) 
to develop algorithms that discern plank-
ton groups and submerged or emergent 
vegetation (Bracher et al., 2019; Lombard 
et al., 2019; Dierssen et al., 2020). While 
some level of empirical prediction may 

always be necessary, particularly region-
ally, PCC algorithm development should 
emphasize bio-optical models that 
include aspects of radiative transfer the-
ory (Dierssen et  al., 2020), particularly 
if we can account for the confounding 
effects of unique optical water masses 
(e.g.,  Palacios et  al., 2012; Kavanaugh 
et al., 2016). In addition, bio-optical stud-
ies can focus on the role of physiological 
acclimation versus community structure 
in driving absorption variations, on the 
role of heterotrophic and detrital parti-
cles in driving scattering, and on how that 
variability can be exploited to understand 
trophic processes. 

In addition to in-water hyperspectral 
sensors and suborbital sensors on UAVs, 
many commercial small to medium sat-
ellite operations bridge the gap by pro-
viding short-term data sets to research-
ers for determining the feasibility and 
sensitivity of regional algorithms. While 
spectral and geolocation challenges 
affected the marine application utility 
of the Hyperion sensor (which flew on 
EO-1 from 2000 to 2017), smaller- scale, 
marine- focused missions have been sup-
ported by airborne sensors (e.g.,  the 
Airborne Visible Infrared Imaging 
Spectrometer, AVIRIS) and sensors 
onboard the International Space Station, 
including the Hyperspectral Imager of 
Coastal Oceans (HICO; 2009–2014) and 
the DLR Earth Sensing Spectrometer 
(DESIS, 2018–present). Together, their 
data archives provide a means for validat-
ing regional algorithms across a range of 
conditions to facilitate science- and man-
agement-ready products upon PACE 
and SBG launch. 

Incorporate Technologies and 
Theory to Improve Synoptic 
Coverage of Multiple Trophic Levels 
Technological advancements in recent 
years have enabled in situ, auto-
mated, continuous monitoring of bio-
diversity in marine environments 
(e.g., D.M. Anderson et al., 2012; Muller-
Karger et  al., 2018a,b). Increasingly, 
instrumentation is being deployed on 

mobile platforms to map the distribu-
tion and abundance of species in the 
ocean, some with the capability of real-
time data transmission (D.M. Anderson 
et al., 2012). MBON researchers are cur-
rently using ship-based and autonomous 
instrumentation (e.g.,  Environmental 
Sample Processors, ESP; Figure 2) to 
collect environmental DNA (eDNA; 
Djurhuus et al., 2018, 2020; Chavez et al., 
2021, in this issue), enumerate and iden-
tify phytoplankton and microzooplank-
ton through imaging flow cytometry 
(Sosik and Olson, 2007), and survey zoo-
plankton and ichthyoplankton with an in 
situ ichthyoplankton imager and sampler 
(e.g., Cowen and Guigand, 2008) at high 
frequency over large spatial scales. 

Where possible, technologically 
advanced observations should be col-
lected coincident with traditional meth-
ods, including microscopy, net tows, 
and pigment extraction (Dierssen et  al., 
2020), to facilitate retrospective analy-
ses that can be vicariously validated with 
historic ocean color patterns. Currently, 
MBON scientists are conducting meth-
odological comparisons within sea-
scapes to determine variability of rarefac-
tion and community composition across 
eDNA, high-performance liquid chro-
matography, and imaging-based assess-
ments. Cross validation can also include 
smart, simple technology such as smart 
phone microscopy and spectrometry 
(e.g., Leeuw and Boss, 2018) that is acces-
sible to various end users including man-
agement agencies, industry, and commu-
nity scientists. 

While PACE and SBG will provide 
unprecedented coverage of phytoplank-
ton and larger zooplankton, forage fish 
are too large to be sensed with passive 
optical measurements and too small to 
be tagged. Recent advances using space-
based lidar show promise for resolv-
ing course-scale differences in the tim-
ing and biomass of vertical migration 
(e.g.,  Behrenfeld et  al., 2019), although 
variation in water mass trophic structure 
and/or size structure are not resolved well 
(Dionisi et  al., 2020). Lidar algorithms 
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cannot yet account for differences in 
taxa, although size distributions may be 
resolved by exploiting the polarimetry 
of multi-wavelength, ship-based lidar 
(Schulien et  al., 2020). As a first step, 
MBON research will merge traditional 
spectral-based bio-optics, multi-trophic 
level imaging (e.g., Briseño-Avena et al., 

2020; Schmid et  al., 2020), and ecologi-
cal theory to exploit signals contained 
within multitrophic level size distribu-
tions (e.g., Lombard et al., 2019). MBON 
research is also merging animal telemetry 
and tenets of movement ecology into a 
seascape ecology framework (e.g., Breece 
et al., 2016) to better understand behav-
iors that can depend on water quality and 
forage patchiness (Sequiera et al., 2018). 

Extend Spatiotemporal Resolution 
with Multi-Satellite and In Situ 
Platform Integration
For coastal zones, the integration of open 
ocean satellites (both geostationary and 
polar orbiting) that currently have mod-
erate spectral resolution (multispectral), 
moderate spatial resolution (>300 m), 
and high repeat (~daily or more fre-
quent) with higher-resolution satel-
lite (e.g., Landsat 8 30 m, 16-day repeat; 
pointing sensors on the International 
Space Station) and suborbital observa-
tions (e.g.,  unoccupied aerial systems, 
UASs) will be important for monitor-
ing changes, particularly for interactions 
between pelagic processes and founda-
tion species. Increased capacity to use 
UASs in coastal zones will be beneficial, 

along with lightweight multi-and hyper-
spectral sensors that can adequately 
detect subtle shifts in phytoplankton 
with improved radiometric and spectral 
sensitivity. Additional insight and spa-
tial coverage can occur with a diverse 
suite of AUVs, including gliders, floats, 
and sail drones.

Over the past decade, the United States 
has invested in several in- and above- 
water observatories that provide critical 
and complementary observations to the 
MBON. On the West Coast, the Ocean 
Observatories Initiative (OOI) Endurance 
Array collects multi- and hyper spectral 
measurements of optical properties 
across Oregon and Washington shelves 
and has been utilized to assess regional 
and temporal patterns of phytoplankton 
biomass (Freitas et al., 2018). NOAA’s HF 
radar array measures water currents and 
waves several hundred kilometers off-
shore. Information on waves and water 
quality can inform circulation processes 
that affect navigation, spill responses, and 
general water quality, and they can also 
inform feature-based ecological analyses 
such as the accumulation of larvae along 
eddies, formation and evolution of local 
plankton blooms, and the persistence of 
fronts. Finally, MBON nodes each collab-
orate with an IOOS Regional Association 
so that data is exchanged between scien-
tists and stakeholders.

Advances in modeling and integration 
of both predictive and mechanistic mod-
els can assist in the integration of informa-
tion across sensors (including satellites), 

platforms, and models (Capotondi et al., 
2019). Once feature space has been iden-
tified (Rose et al., 2007), model intercom-
parison can assist with uncertainty assess-
ment, better parameterization of optical 
models, extension of properties through 
depth, and stronger linkages between 
observable patterns and mechanism. The 

complexity of regional and global models 
is expanding, and now includes param-
eters that are analogous to remote sens-
ing (particularly passive remote sens-
ing; e.g., IOCCG, 2020), as a step toward 
understanding the limitations of technol-
ogy and algorithms in capturing future 
change signatures. 

Contribute to Regional and Global 
Biodiversity Indicators
MBON nodes are partnered with 
National Marine Sanctuaries in the 
Florida Keys, Monterey Bay, and the 
Channel Islands, and with the new nodes 
in the Olympic Coast and Stellwagen 
Banks National Marine Sanctuaries. 
Sanctuaries regularly use satellite-based 
measurements (e.g., SST, altimetry, scat-
terometry) to inform Condition Reports 
and develop ecosystem health indica-
tors that correspond to changes in ocean 
and climate (e.g.,  Pirhalla et  al., 2009). 
Derived products such as SST anoma-
lies and Bleaching Alert Areas also warn 
sanctuary staff regarding habitats at risk 
(Basta et al., 2015). 

The NOAA Fisheries Integrated 
Ecosystem Assessment (Levin et  al., 
2009) includes research and synthesis to 

 “MBON researchers have advanced remote-sensing capabilities in a broad 

spectrum of applications that can assist in understanding and monitoring patterns 

across several trophic levels, demonstrating that MBON can serve as a bridge 

between remote-sensing science, ecology, and conservation.”



Oceanography |  Vol.34, No.274

support ecosystem-based management of 
resources, activities, and services. While 
remote-sensing data are regularly utilized 
to identify physical changes in ecosys-
tems, ecological indicators rely on cruise-
based surveys (e.g.,  Fisher et  al., 2015; 
Santora et al., 2017). For the West Coast, 
there are no indicators that directly con-
nect bottom-up processes, such as cur-
rents, upwelling, nutrient loading, and 
temperature, to key food web groups 
such as zooplankton, larval fish, filter 
feeders, or higher trophic levels (Harvey 
et  al., 2017). Given the relationship of 
phytoplankton community structure 
to food quality for higher trophic levels 
(e.g., Miller et al., 2018), the importance 
of monitoring for harmful algal blooms, 
and the increase in capacity to resolve 
taxonomic groups with PACE, develop-
ment of satellite-based lower trophic level 
indicators will be important for the next 
phase of MBON research. 

Satellite remote sensing is critical to 
monitoring of essential ocean and bio-
diversity variables, to management, and 
to policy-ready collections that adhere 
to common standards and dissemina-
tion (Benson et  al., 2021, in this issue; 
Estes et  al., 2021). The Global Ocean 
Observing System created the system of 
Essential Ocean Variables (EOVs), sev-
eral of which can be observed synopti-
cally from space. Relevant to MBON, 
biodiversity, and ocean health, satel-
lite EOVs include sea surface tempera-
ture (microwave and near-infrared radi-
ometry measurements), sea surface 
height and currents (altimetry), rough-
ness (scatterometry), salinity (scatter-
ometry and microwave radiometry), sea 
ice (microwave radiometry), and a broad 
category of ocean color (visible radiome-
try) (Figure 1). The diversity and biomass 
of phytoplankton, and foundation groups 
such as seagrass, mangroves, macroalgae, 
and corals, are also each listed as an EOV 
and are attainable using satellite or subor-
bital remote sensing. 

Essential Biodiversity Variables (EBVs; 
Pereira et al., 2013) are indicators that can 
build from EOVs (e.g.,  Muller-Karger 

et  al., 2018a,b) to provide information 
on several dimensions of biodiversity, 
including genetic composition, species 
populations, species traits, community 
composition, ecosystem functioning, 
and ecosystem structure (Schmeller 
et  al., 2017). While MBON nodes cur-
rently measure biodiversity across all 
EBV dimensions, some are more directly 
supported by satellite remote sensing. 
For example, phytoplankton size is an 
important species trait that reflects nutri-
ent uptake efficiencies, trophic trans-
fer, and export of carbon (Irwin and 
Finkel, 2018; Lombard et  al., 2019) that 
is measured both in situ and remotely 
(e.g.,  Kostadinov et  al., 2009, 2016). 
Productivity and disturbance regimes 
are indicators of ecosystem functioning; 
duration, intensity, and spatial extent of 
anomalous events like severe storms or 
marine heatwaves and their effects on 
biogeochemistry or fisheries can all be 
tracked using satellite remote sensing 
(e.g.,  Santora et  al., 2021, in this issue). 
Ecosystem structure includes habitat 
structure (including vertical habitat), 
ecosystem extent and fragmentation, and 
ecosystem composition by functional 
type. Here, MBON researchers have 
developed EBVs, including kelp cover 
(Cavanaugh et  al., 2011) and dynamic 
seascapes (e.g.,  Kavanaugh et  al., 2016, 
2018), and thus contribute to the ability 
to link observations of ocean biodiversity 
to a global framework of marine ecosys-
tem management and policy. 

SUMMARY
Satellite remote sensing provides synop-
tic time series to monitor changing ocean 
conditions over space and time. Within 
the US MBON network, multi-platform 
satellite remote sensing is being used at 
local to global scales to define plankton 
groups; to identify the extent, composi-
tion, and functioning of foundation spe-
cies as part of species distribution mod-
els; and for the classification of dynamic 
features and seascape habitats. Ongoing 
and future work will integrate high tax-
onomic resolution sensors and hyper-

spectral optics to better resolve the rich 
multitrophic level diversity of coastal 
ecosystems. As part of an integrated net-
work, satellite remote sensing provides 
oceanographic context, a means to scale 
in situ measurements of species to com-
munities and to broader spatial scales, 
and a critical tool for understanding the 
response of marine biodiversity to its 
ever- changing environment. 
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